Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties.

نویسندگان

  • Robert W Haushalter
  • Woncheol Kim
  • Ted A Chavkin
  • Lionadi The
  • Megan E Garber
  • Melissa Nhan
  • Paul D Adams
  • Christopher J Petzold
  • Leonard Katz
  • Jay D Keasling
چکیده

Microbial fermentation is emerging as an increasingly important resource for the production of fatty acids to serve as precursors for renewable diesel as well as detergents, lubricants and other industrial chemicals, as an alternative to traditional sources of reduced carbon such as petroleum. A major disadvantage of fuels derived from biological sources is their undesirable physical properties such as high cloud and pour points, and high viscosity. Here we report the development of an Escherichia coli strain that efficiently produces anteiso-branched fatty acids, which can be converted into downstream products with lower cloud and pour points than the mixtures of compounds produced via the native metabolism of the cell. This work addresses a serious limitation that must be overcome in order to produce renewable biodiesel and oleochemicals that perform as well as their petroleum-based counterparts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High cell density production of multimethyl-branched long-chain esters in Escherichia coli and determination of their physicochemical properties

BACKGROUND Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To overcome this limitation, we took advantage of a polyketide synthase-based system...

متن کامل

Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy fu...

متن کامل

Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property

BACKGROUND The steadily increasing demand for diesel fuels calls for renewable energy sources. This has attracted a growing amount of research to develop advanced, alternative biodiesel worldwide. Several major disadvantages of current biodiesels are the undesirable physical properties such as high viscosity and poor low-temperature operability. Therefore, there is an urgent need to develop nov...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel

BACKGROUND Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Metabolic engineering

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014